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Abstract—With the rapid advancement of Large Language
Models (LLMs), their capabilities in various automation do-
mains, particularly Unmanned Aerial Vehicle (UAV) operations,
have garnered increasing attention. Current research remains
predominantly constrained to small-scale UAV applications, with
most studies focusing on isolated components such as path plan-
ning for toy drones, while lacking comprehensive investigation of
medium- and long-range UAV systems in real-world operational
contexts. Larger UAV platforms introduce distinct challenges,
including stringent requirements for airport-based take-off and
landing procedures, adherence to complex regulatory frame-
works, and specialized operational capabilities with elevated
mission expectations. This position paper presents the Next-
Generation LLM for UAV (NELV) system—a comprehensive
demonstration and automation roadmap for integrating LLMs
into multi-scale UAV operations. The NELV system processes
natural language instructions to orchestrate short-, medium-
, and long-range UAV missions through five key technical
components: (i) LLM-as-Parser for instruction interpretation,
(ii) Route Planner for Points of Interest (POI) determination,
(iii) Path Planner for waypoint generation, (iv) Control Platform
for executable trajectory implementation, and (v) UAV moni-
toring. We demonstrate the system’s feasibility through three
representative use cases spanning different operational scales:
multi-UAV patrol, multi-POI delivery, and multi-hop relocation.
Beyond the current implementation, we establish a five-level
automation taxonomy that charts the evolution from current
LLM-as-Parser capabilities (Level 1) to fully autonomous LLM-
as-Autopilot systems (Level 5), identifying technical prerequisites
and research challenges at each stage. Project page with code
and videos: https://liangqiyuan.github.io/NeLV/.

Index Terms—Large Language Model, Unmanned Aerial Ve-
hicle, Planning, Autonomous Systems

I. INTRODUCTION

The rise of Large Language Models (LLMs) has trans-
formed numerous domains, such as mobile services, vehicles,
and robotics [1]–[3]. These fields have become increasingly
intelligent and user-friendly through LLM integration, en-
abling command and control through natural language. This
conversation-based control between humans and LLMs im-
proves both the ability of LLMs to interpret context and
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Fig. 1. Overview of the NELV System.

the convenience with which humans can direct LLMs to
perform actions [4]. LLMs fulfill diverse roles within these
systems. LLM-as-Router can orchestrate task allocation and
model selection for human pilots, LLM-as-Agent can execute
actions on behalf of humans, and LLM-as-Judge can conduct
evaluations in place of human judgment. The increasing
specialization of LLMs in distinct roles throughout systems
optimizes their performance through clear responsibility al-
location. Consequently, LLMs are becoming an essential
component of next generation autonomous control and self-
driving technologies.

Unmanned Aerial Vehicles (UAVs) represent an important
component of next generation transportation [17], [18]. Ac-
cording to data from the Federal Aviation Administration
(FAA), registered UAVs in the United States exceed 1 million
as of March 2025, with 427,335 remote pilots certified [19].
As UAV numbers increase, this human pilot workforce proves
inadequate and represents one of the limitations preventing
UAVs from assuming a more substantial role in transportation.
How to enable fewer human pilots to operate a single UAV
or allow one human pilot to control multiple UAVs remains
an ongoing research question. This challenge necessitates
assistance from powerful automation systems to help human
pilots process information, comprehend data, suggest opera-
tions, execute actions, and communicate effectively. LLMs
emerge as strong candidates not only because they accept
language input, which proves considerably more efficient than
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TABLE I
COMPARISON OF RELATED LITERATURE OF LLM FOR UAV SYSTEM

Literature Year Type Key Topic Implementation Case Study
Short-Range Medium-Range Long-Range

[5] 2024 Survey LLMs for UAVs - - - -

[6] 2025 Survey LLMs for UAVs - - - -

[7] 2024 Survey Generative AI for UAVs - - - -

[8] 2024 Survey Generative AI for UAV
Networks

- - - -

[9] 2024 Survey Generative AI for UAV
Networks

- - - -

[10] 2024 Benchmark Simulation Platform Simulator City UAV Simulator - -

[11] 2023 Research LLM for UAV Planning Indoor Small UAV Mission Planning - -

[12] 2023 Research LLM for UAV Planning Simulator Mission Planning - -

[13] 2024 Research LLM for UAV Planning Indoor Small UAV Object Detection - -

[14] 2024 Research LLM for UAV Planning Indoor Small UAV Obstacle Prediction - -

[15] 2024 Research LLM for UAV Planning Indoor Small UAV Mission Planning - -

[16] 2024 Research LLM for UAV Planning Outdoor Small UAV Swarm Formation - -

Ours 2025 Position
Paper

• LLM-as-Parser
• Route Planning
• Path Planning
• Control Platform
• UAV Monitoring

Outdoor Medium UAV Multi-UAV Patrol Multi-POI Delivery Multi-Hop Relocation

alternative command inputs, but also because their robust
reasoning capabilities enable them to process UAV-related
information effectively.

Although considerable literature focuses on LLM for UAV
systems, most studies remain confined to singular aspects,
such as using LLMs solely for small toy UAV planning, as
detailed in Table I. A significant research gap exists regarding
a comprehensive system that progresses from human language
input to determining potential path nodes, developing detailed
paths, integrating with UAV platforms, and ultimately control-
ling UAVs. Most of the literature exclusively addresses the
planning of small UAVs without considering medium- and
long-range UAV planning. These categories exhibit substan-
tial differences. Small UAVs, typically multirotors, can take
off from any location and perform short-distance missions,
but possess limited cargo capacity and lower performance
capabilities. Medium- and long-range UAVs, typically fixed-
wings, require airport infrastructure and the adherence to strict
take-off and landing procedures. They must also comply with
FAA regulations, including prohibitions against flying over
crowds and requirements to avoid air traffic control zones.
These considerations present new and unique challenges for
LLM for UAV systems.

In this paper, we present the Next-Generation LLM for
UAV (NELV) system, illustrated in Figure 1. This LLM-
powered UAV system translates human language input into
autonomous control of short-, medium-, and long-range UAVs
that perform various missions. The system incorporates mul-
tiple key technical components, including LLM-as-Parser,
route planning, path planning, and control platform. Human
pilots can access the input for each component and intervene
to control or modify operations. While we envision future
systems where LLMs play central roles in planning, control,
and decision-making, current LLM capabilities remain limited

for safety-critical UAV operations. Therefore, this position
paper serves dual purposes: (1) System Demonstration: We
present a working implementation where LLMs handle natural
language interpretation (Level 1 of our taxonomy) while
traditional algorithms perform route planning, path planning,
and control; and (2) Automation Roadmap: We establish
a five-level taxonomy that defines technical requirements,
identifies key challenges, and charts development pathways
from current LLM-as-Parser capabilities to future LLM-as-
Autopilot systems capable of fully autonomous decision-
making.

The contributions of this position paper are as follows.

• End-to-End System Framework and Implementation:
We introduce NELV, the first complete framework in-
tegrating LLMs with multi-scale UAV operations from
natural language input to executable flight trajectories. To
our knowledge, NELV represents the first LLM-powered
UAV system capable of supporting short-, medium-, and
long-range operations, as well as complex missions in-
volving multi-UAV patrol, multi-POI delivery, and multi-
hop relocation scenarios.

• Five-Stage Pipeline Architecture: We develop a com-
prehensive pipeline encompassing: (i) LLM-as-Parser
that engages in conversational interaction with human
pilots to iteratively refine flight plans and interpret op-
erational preferences; (ii) Route Planner that considers
pilot-specified constraints and multi-objective optimiza-
tion criteria; (iii) Path Planner that circumvents restricted
zones, including controlled airspace and adverse meteo-
rological conditions; (iv) Control Platform that gener-
ates executable trajectories incorporating airport-specific
take-off and landing patterns; and (v) UAV Monitor that
provides real-time mission execution with safety pilot
intervention capabilities.
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• Multi-Scale Mission Demonstration: We demonstrate
the system’s capabilities through three representative use
cases spanning different operational scales: (UC1) short-
range multi-UAV patrol, wherein five UAVs conduct
surveillance of forested areas within a 5 km radius;
(UC2) medium-range multi-POI delivery with two de-
livery objectives; and (UC3) long-range multi-hop relo-
cation from New York to Los Angeles with intermediate
refueling stops. The system integrates real-time airspace
information, population density data, and weather risk
assessments to enable safe autonomous operations at any
airport within the continental United States.

• Five-Level Automation Roadmap: We establish a sys-
tematic taxonomy defining the evolution from current
capabilities to fully autonomous systems: (L1) LLM-as-
Parser for instruction interpretation, (L2) LLM-as-Route-
Planner for strategic route optimization, (L3) LLM-as-
Path-Planner for tactical path determination and collision
avoidance, (L4) LLM-as-Executor for integrated control
system coordination, and (L5) LLM-as-Autopilot for fully
autonomous flight operations. For each level, we iden-
tify specific technical prerequisites, required knowledge
bases, and key research challenges.

The remainder of this paper is organized as follows. Section
II reviews the existing literature on LLM for UAV systems.
Section III introduces the overall NELV system architecture
and the five key technical components. In Section IV, we
present the experimental configuration, datasets utilized, and
three representative use cases that demonstrate system ca-
pabilities. Before concluding the paper in Section VI, we
discuss five hierarchical levels of future research directions
and development pathways in Section V.

II. RELATED WORK

A. LLM for UAV

A significant characteristic of LLMs compared to traditional
machine learning methods is their powerful reasoning and
generalization capabilities that autonomously complete var-
ious tasks. This is particularly important for UAVs, including
context understanding, perception, planning, decision-making,
and more [20], [21]. Additionally, LLMs enable more natural
language-based communication with human pilots, reducing
operational burden [22] and potentially allowing non-expert
users to operate UAVs in the future. Unlike other automated
tasks such as autonomous driving, UAVs are categorized as
short-range, medium-range, and long-range vehicles, which
can be further classified into fixed-wing, multi-rotor, and other
configurations [6]. Each type requires different operational
approaches. UAV operation presents greater challenges than
that of autonomous vehicles due to various factors. These
diverse configurations and structures pose unique challenges
in the deployment and generalization of LLMs in the UAV
domain. This diversity in configurations, structures, and oper-
ational methods also results in a lack of large UAV datasets
for LLM training, which is a fundamental issue hindering
the deep development of LLMs in this field. Currently, most
datasets are limited to bird’s-eye view detection of ground

objects such as people, vehicles, roads, fires, buildings, and
more [10], [23]–[26], representing only a minimal portion of
UAV missions. Related datasets for UAV control, planning,
and human-pilot language dialogue are scarce [27], [28].

Therefore, our proposed NELV system aims to address
these research gaps. We present a complete system workflow
for LLM for UAV, from language input to actual UAV flight
control. Unlike related literature that focuses on complex
computer vision tasks (such as identifying ground objects),
we emphasize UAV planning, control, and flight. Notably,
the NELV system can incorporate any state-of-the-art vi-
sion model to accomplish various tasks, making our system
complementary to other vision models. Most importantly,
we demonstrate that the NELV system can operate short-
range, medium-range, and long-range UAVs. This provides
readers with a reliable platform for developing various UAV
configurations.

B. UAV Autonomous System

Flight plan development in UAV autonomous systems con-
stitutes a prerequisite for mission execution. It encompasses
five fundamental phases: take-off, en-route flight, mission
execution, return flight, and landing [29]. This structure
proves particularly essential for fixed-wing UAVs and large-
scale UAVs, as deviation from these established protocols
potentially precipitates severe safety incidents [30]. The ex-
isting UAV literature predominantly focuses on small toy
UAVs, particularly multirotor configurations, or neglects UAV
traffic patterns [31], [32]. Furthermore, UAV missions in
the literature are predetermined by human pilots without
addressing real-world flight planning challenges involving
ambiguous objectives and numerous alternatives. For example,
for refueling operations, pilots encounter multiple airport
options with varying fuel costs, where human pilots select
options based on costs, quality, safety, or other factors. Subse-
quently, after selecting the appropriate nodes, the specific path
planning requires a reasonable 3D planning based on multi-
ple objectives [33]–[38], presenting a unique challenge that
must simultaneously accommodate FAA regulations while
determining optimal paths from infinite possible waypoints.
Moreover, the trajectory builds upon beyond path planning
by incorporating traffic patterns for take-off, landing, and
mission execution [39], requiring an appropriate configuration
according to airport specifications. Recall the objectives of
our NELV system, all three aforementioned procedural steps
necessitate consideration of various UAV types, flight ranges,
missions, and additional variables, introducing significant
implementation challenges.

The proposed NELV system aims to incorporate and deploy
various UAV configurations to accomplish diverse missions.
The planning problem progresses hierarchically from high-
level node selection to specific path determination, and ulti-
mately to comprehensive trajectory specification. Our NELV
system extends the relevant literature by considering how to
determine nodes in UAV missions, such as selecting from
multiple candidate mission locations. This approach not only
enhances mission flexibility, facilitating more adaptable and
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Fig. 2. Operational Framework and User Interface of the NELV System. Left – Chat Box: The pilot interacts with the LLM through natural-language
instructions. After receiving an initial flight plan, the pilot performs route and path planning with visualization support. Top – Control Platform [40]: Once
the path is uploaded, the pilot can further refine the mission by manually adjusting waypoints. Right – UAV Monitor: The safety pilot continuously monitors
UAVs’ status, position, and flight behavior during operation and can make real-time adjustments as needed.

highly customized flight operations, but also substantially re-
duces cognitive demands on human pilots through preference-
based adaptive flight planning protocols. Furthermore, our
NELV system’s comprehensive design architecture thoroughly
addresses all flight components, including take-off, landing,
and mission-specific traffic patterns, providing practical solu-
tions for real-world applications.

III. NEXT-GENERATION LLM FOR UAV SYSTEM

A. NELV System Overview

The NELV system interprets missions through natural lan-
guage input from human pilots, performs route planning based
on flight specifications, executes path planning according to
environmental constraints and airspace restrictions, imple-
ments executable trajectories through the control platform,
and finally monitors UAV flight operations, as illustrated
in Figure 2. The current NELV system comprises five key
components: (i) LLM-as-Parser for interpreting human pilot
instructions, (ii) Route Planner for determining nodes along
the flight trajectory, (iii) Path Planner for establishing specific
paths between each pair of nodes, (iv) Control Platform for
generating executable trajectories, and (v) UAV Monitoring
for ultimate flight execution. Pilots retain the capability to
intervene and modify system outputs at any stage following
component execution through the three interfaces depicted in
Figure 2, enabling real-time adaptation to suboptimal planning
results or evolving mission requirements.

Mathematically, the NELV system operates by constructing
a UAV flight graph G = (V, E ,X ,Y), where V represents the
set of nodes, E represents the set of edges, X is the set of
node attributes, and Y denotes the node types.

(i) LLM-as-Parser determines nodes E along with their
attributes X and types Y based on the UAV mission
described by the human pilot, such as forest wildfire
surveillance or supermarket supply delivery operations.
A specific forest area or supermarket establishment con-
stitutes a node v ∈ V . These nodes possess distinct
attributes x ∈ X , including geographical coordinates
(latitude/longitude), operational status, and congestion
levels. The node type y ∈ Y represents the designated
flight pattern and operational mode, as aircraft may
execute aerial cargo drops for supermarket deliveries
while airports facilitate conventional landing and take-
off procedures.

(ii) Route Planner performs preliminary route planning
based on G, where a route is a sequence of nodes that
can be expressed as

ξ = [v1, v2, . . . , vN ], (1)

where vi ∈ V and N ≥ 2 is an integer representing the
number of nodes in the route. The route ξ must include
take-off and landing nodes, which may be identical.
Route planning here is multi-objective, always consid-
ering the balance between mission completion, flight
quality, and cost.

(iii) Path Planner based on the preliminary route ξ generates
a more detailed and specific path:

π = [v1, p
(1)
1,2, p

(2)
1,2, . . . , v2, p

(1)
2,3, p

(2)
2,3, . . . , vN ], (2)

where p
(j)
i,i+1 represents the j-th waypoint in the path

segment connecting node vi to node vi+1. This detailed
path planning incorporates comprehensive FAA regula-
tions governing various airspace classifications.
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Algorithm 1: NELV System
/* LLM-as-Parser */

Input: Pilot instructions
Output: Graph G and constraints Cmax

Execute: Algorithm 2
Interface: Chat Box ▷ Fig. 2 - Left

/* Route Planner */
Input: Graph G and constraints Cmax

Output: Route ξ ▷ Eq. (1)
Execute: Algorithm 3
Interface: Chat Box ▷ Fig. 2 - Left

/* Path Planner */
Input: Route ξ ▷ Eq. (1)
Output: Path π ▷ Eq. (2)
Execute: Algorithm 4
Interface: Chat Box ▷ Fig. 2 - Top

/* Control Platform */
Input: Path π ▷ Eq. (2)
Output: Trajectory ρ ▷ Eq. (3)
Execute: Algorithm 5
Interface: Control Platform ▷ Fig. 2 - Top

/* UAV Monitor */
Input: Trajectory ρ ▷ Eq. (3)
Execute: UAV
Interface: UAV Monitor ▷ Fig. 2 - Right

(iv) Control Platform transforms the path π into an exe-
cutable trajectory:

ρ = [V1, p
(1)
1,2, p

(2)
1,2, . . . ,V2, p

(1)
2,3, p

(2)
2,3, . . . ,VN ], (3)

where each Vi represents a specialized air traffic pattern
corresponding to the node type yi ∈ Y of node vi. These
patterns include specific procedures such as take-off
sequences, loiter points, and landing procedures tailored
to the operational context of each node.

(v) UAV Execution and Monitoring: The UAV receives tra-
jectory coordinates and associated control commands
from the control platform. The onboard flight control
systems autonomously navigate the aircraft to sequential
waypoints while maintaining prescribed flight param-
eters. Concurrently, the UAV’s integrated sensor suite
transmits real-time telemetry data, including precise ge-
olocation coordinates, fuel levels, engine RPM, oil tem-
perature, and other critical operational parameters, to the
ground control platform. Remote operators continuously
monitor all system parameters and maintain supervisory
control authority to implement corrective interventions
when operational anomalies or safety considerations ne-
cessitate manual override.

Next, we will introduce the algorithms and functions of each
key technical component.

B. LLM-as-Parser

LLM-as-Parser constitutes the most fundamental compo-
nent of the NELV system, as it defines the UAV flight
graph G, and its accuracy directly impacts the outcomes
of all subsequent processes. Although we envision future

Algorithm 2: LLM-as-Parser and Graph Construction
Input from Human Pilot: Initial instruction (I0) and

subsequent instructions (It for t > 0)
Input from Map Service: Node attributes (X )
Output: Graph (G) and constraints Cmax

1 Initialize sets of nodes V , types Y , and constraints Cmax

2 Initialize conversation I ← I0
3 Initialize time index t← 0
4 while instruction It exists do
5 Concatenate instruction to history I ← I ⊕ It
6 LLM reason using conversation Rt ← LLM(I)
7 Extract information from response: Y,Cmax ← Rt

8 Search from Map Service to obtain nodes V and their
attributes X based on node types Y

9 Concatenate response to history I ← I ⊕Rt

10 t← t+ 1

11 Initialize set of edges E
12 Obtain number of nodes N ← |V|
13 for i = 1, . . . , N do
14 for j = 1, . . . , N do
15 if i ̸= j then
16 Compute edge weight wi,j between nodes vi

and vj
17 Add edge E ← E ∪ {(vi, vj , wi,j)}

18 Construct graph G ← (V, E ,X ,Y)

Algorithm 3: Route Planner
Input from LLM-as-Parser: Graph (G) and constraints

(Cmax)
Output: Optimal route (ξ∗)
1 Initialize candidate route set Ω
2 for each set y ⊆ Y do
3 for permutation y⃗ of y do
4 if y⃗ satisfies constraints Cmax then
5 Construct a subgraph Gy⃗ containing only nodes

of types in y⃗
6 Search subgraph Gy⃗ to find locally optimal

route ξ̃ ▷ Eq. (4)
7 Add ξ̃ to candidate set: Ω← Ω ∪ {ξ̃}

8 if Ω ̸= ∅ then
9 Select optimal route ξ∗ from Ω based on human

pilot or objective function Oroute(ξ) ▷ Eq. (4)
10 Early stop

11 else
12 Output direct route if no feasible solution ξ∗ ← [v1, vN ]

LLMs possessing capabilities beyond merely defining graph
G to encompass route determination ξ, path planning π,
and executable trajectory generation ρ, we have determined
that current general-purpose LLMs (e.g., GPT-4o [41]) lack
sufficient capability due to the absence of specialized LLMs
trained on UAV planning datasets. Therefore, we presently
utilize LLMs exclusively as instruction parsers to extract
essential information from natural language instructions, in-
cluding departure points, destination coordinates, and mission
specifications.

In a typical operational scenario, a human pilot might
instruct: “I would like to check all forests near Purdue Univer-
sity within 5 km.” The LLM-as-Parser systematically extracts
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“Purdue University” as the reference point, “forests” as the
surveillance target, and “5000” as the operational radius.
This parsing process becomes challenging when accounting
for inherent variability in human linguistic behavior, includ-
ing potential typographical errors, linguistic ambiguities, and
incomplete information specifications. Human pilots must
supplement or correct previous instructions through iterative
dialogue, particularly when mission parameters require mod-
ification due to operational factors, such as alterations in de-
parture and arrival points or temporal constraints imposed by
air traffic control clearances. Continuing the aforementioned
scenario, if the pilot initially omits the number of UAVs
required for mission execution, they can subsequently provide
clarification by stating: “I have 5 UAVs for the mission.” Such
iterative refinements exemplify the dynamic nature of mission
planning, where initial instructions may be incomplete or re-
quire adjustment based on evolving operational requirements.
These modifications can occur at any stage within the NELV
system pipeline, including immediate corrections during ini-
tial instruction input, post-route planning adjustments when
selecting optimal cost or time-efficient alternatives, or post-
path planning modifications necessitated by adverse meteo-
rological conditions. Consequently, a critical functionality of
LLM-as-Parser involves processing human pilot interactions
through conversational interfaces to dynamically modify flight
plans while maintaining mission coherence.

C. Route Planning

Following the construction of the graph G by LLM-as-
Parser, the next step involves identifying a route within G from
the start point v1 to the end point vN that fulfills the mission
requirements. These key points are represented as nodes v ∈ V
in G. The fundamental goal of route planning is to determine a
sequence of nodes as the route ξ = [v1, v2, . . . , vN ] based on
multiple objectives, such as identifying optimal fueling loca-
tions according to fuel costs and consumption profiles, while
accommodating various constraints, such as time limitations.
Mathematically, this optimization problem can be formulated
as:

ξ∗ = argmin
ξ∈Ω

Oroute(ξ)

Oroute(ξ) =

n−1∑
i=1

(
α · L(vi, vi+1)− (1− α) · R(vi+1)

)
s.t. C(ξ) ≤ Cmax

M(ξ) = 1

,

(4)
where ξ∗ represents the optimal route, Ω denotes the feasible
route space from start point to end point, and Oroute(π)
characterizes the objective function governing the route op-
timization process. L(vi, vi+1) represents the cost function
between consecutive nodes, incorporating factors such as air
traffic density, prevailing wind conditions, fuel consumption,
etc. R(vi+1) denotes the reward or utility associated with
visiting node vi+1. The parameter α balances the trade-off
between minimizing costs and maximizing rewards. C(ξ)
represents a vector of constraint functions with upper bound

Algorithm 4: Path Planner
Input from Route Planner: Route (ξ)
Input from Services: Service data (S)
Output: Optimal path (π∗)
1 Initialize population P , personal best positions p0, global

best g0, and velocity v0

2 for t = 1, . . . , T − 1 do
3 Generate random vectors rp and rg
4 Update velocity and positions ▷ Eq. (6)
5 Evaluate objective function Opath(Pt+1) ▷ Eq. (5)
6 for i = 2, . . . , N do
7 if Opath(Pt+1[i]) < Opath(pt[i]) then
8 Update personal best: pt+1[z]← Pt+1[z]

9 else
10 Maintain personal best: pt+1[z]← pt[z]

11 Update global best: gt+1 ← argminp∈pt+1 Opath(p)

12 Output optimal path π∗ ← gT

Cmax, encompassing various operational limitations. M(ξ)
signifies the mission completion indicator function, which is
equal to 1 if all mission requirements are satisfied and 0
otherwise.

These functions are determined by UAV specifications, mis-
sion parameters, and operational contexts, and are configured
on a case-by-case basis according to specific requirements.
For instance, when executing a long-range multi-hop reloca-
tion mission requiring intermediate refueling, the cost function
L(vi, vi+1) incorporates fuel pricing variations across differ-
ent airports and flight-related consumption metrics, while the
reward function R(vi+1) may assume negligible values when
fuel quality considerations are not operationally relevant.
The constraint function C(ξ) represents current fuel capacity
levels and range limitations, while the mission completion
criterion M(ξ) indicates successful refueling operations and
mission objective fulfillment. Comprehensive descriptions of
each function implementation for the respective use cases are
provided in Section IV.

D. Path Planning

Following the determination of the optimal route ξ∗ by
the route planner, the path planner generates a more detailed
and specific path π, accounting for a comprehensive set of
service data S, which encompasses weather forecasts, ground
risks, airspace restrictions, and various regulatory parameters
to ensure compliance with FAA regulations while minimizing
operational costs. Given the nodes from ξ, the path planning
problem involves finding intermediate waypoints p

(j)
i,i+1 ∈ R3

(representing longitude, latitude, and altitude) to construct a
path π that optimizes a composite objective function. For
each segment connecting nodes vi and vi+1, the path planning
problem can be formulated as:

π∗
i,i+1 = argmin

π∈Πi,i+1

Opath(π)

Opath(π) = βc · Φ(π) + βf · F(π)
, (5)

where π∗
i,i+1 designates the optimal path segment between

nodes vi and vi+1, Πi,i+1 is the set of all feasible paths
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Algorithm 5: Take-off and Landing Pattern Generator
Input: latitude-longitude coordinates (φs, λs), start altitude

(hs), runway heading (θ0), waypoint separation (d),
altitude profile (h), traffic pattern (TP)

Output: Local Circuit (V)

1 Traffic pattern sign s←

{
−1, TP = Left
+1, TP = Right

;

2 Fixed angular offsets ΘRA←s · 90◦, ΘIA←s · 12◦

3 Heading-increment ∆θ←[
0, 0, ΘRA, ΘRA, ΘRA, ΘIA, −2ΘIA, ΘRA, ΘRA, ΘRA, 0

]
4 V←

{
(φs, λs, h0)

}
5 for k = 1, . . . , 9 do
6 θk ← θk−1 +∆θk
7 (φk, λk)← P

(
φk−1, λk−1; dk, θk

)
▷ Eq. (8)

8 V← V ∪
{
(φk, λk, hk)

}
9 return V

between these nodes, and Opath(π) constitutes the objective
function of path planning evaluated with respect to the service
data S. βc and βf are the coefficients for Φ(π) and {(π),
respectively. Φ(π) quantifies constraint violations along the
path, and F(π) represents the cost function evaluated on
this path segment. βc is much larger than βf to ensure
constraints are satisfied. Unlike route planning, which has
finite solutions with a limited number of nodes, path planning
presents infinite potential solutions with numerous possible
waypoints. Consequently, constraints are incorporated directly
into the objective function rather than treated separately as
in Eq. (4). Similarly, path planning is also highly case-
specific, depending on UAV type, size, weight, and mission
scenario. Thus, both the cost function F(π) and the constraint
function Φ(π) vary according to specific requirements. As an
illustrative example, the cost function F(π) typically incorpo-
rates multiple factors relevant to UAV operations, including
path length, mission duration, weather-related hazards, and
ground-associated risks. Weather risks are typically derived
from metrics such as Simplified Forecast Icing Potential
(SFIP), Convective Available Potential Energy (CAPE), and
the Bulk Richardson Number (BRN), which characterize icing
conditions, turbulence, and thunderstorm potential. Ground
risks are computed on the basis of the population density in
the overflight areas and the trajectory length through these
regions. Additionally, wind information can be leveraged to
optimize mission time for reduced fuel consumption.

The complete optimal path π∗ is constructed by concate-
nating the optimal path segments π∗

i,i+1 between consecutive
nodes in route ξ, yielding π∗ = v∗1 ⊕ π∗

1,2 ⊕ v∗2 ⊕ π∗
2,3 ⊕

· · · ⊕ π∗
n−1,n ⊕ v∗N , where ⊕ denotes path concatenation. To

effectively and efficiently determine π within a large search
space comprising both discrete and continuous variables, we
employ Particle Swarm Optimization (PSO) [42], a meta-
heuristic algorithm well suited for this class of problems.
For path planning applications, PSO begins by randomly
generating a set of candidate paths, collectively forming an
initial population P0. This population evolves iteratively for

Fig. 3. Standard take-off circuit pattern configured in a kidney-shaped
trajectory to enable the UAV to maintain controlled loitering within the
traffic pattern until air traffic control (ATC) clearance is received. The purple
waypoint (0) indicates the initial take-off position and white waypoints
represent intermediate navigation points along the flight path. The blue
connecting lines illustrate the planned trajectory segments between consec-
utive waypoints, with the directional arrows indicating the prescribed flight
direction and sequence. Waypoint 5 is strategically positioned to prevent the
aircraft from overflying the active runway, ensuring compliance with aviation
safety protocols and airport operational procedures.

T generations according to the following update equations:

vt+1 = wvt + c1rp · (pt − Pt) + c2rg · (gt − Pt)

Pt+1 = Pt + vt+1

, (6)

where t = 1, 2, . . . , T denotes the generation index. The
parameters w, c1, and c2 represent inertia weight, personal
influence, and social influence, respectively, which are hy-
perparameters for tuning PSO. The term pt represents the
personal best positions historically achieved by each particle
and gt denotes the global best solution identified across
all particles at generation t. The vectors rp and rg contain
uniformly distributed random numbers in the interval [0, 1].
The detailed algorithmic implementation of this PSO-based
path planner is presented in Algorithm 4.

E. Control Platform

To transform the optimal path π∗ into a realistic mission
profile suitable for UAV deployment, the initial waypoint
v1 and terminal waypoint vN must be replaced with stan-
dardized take-off and landing circuit patterns, respectively.
Based on the coordinates of v1 and vN , the corresponding
airports are identified through geospatial matching algorithms.
Subsequently, the coordinates and headings of all runway
endpoints are retrieved from the AirNav database [43] and
utilized to compute the runway centerpoint (φs, λs), which
serves as the reference origin for circuit generation. Given
predefined altitude specifications and waypoint separation
parameters, a local circuit pattern is systematically generated
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using Algorithm 5, where the waypoint sequence is indexed
by k = 0, 1, . . . , 8. The geodetic calculations for circuit
waypoint generation begin with the angular distance normal-
ization, where dk represents the great-circle distance between
consecutive waypoints k and k + 1 in meters:

δk =
dk

6.371× 106
(7)

where δk represents the angular distance normalized by
Earth’s radius (6.371 × 106 meters). Using this normalized
angular distance δ and the bearing angle θk from waypoint
k−1 to waypoint k, the latitude and longitude coordinates of
each waypoint are computed through spherical trigonometry:

φk = arcsin(sinφk−1 cos δk + cosφk−1 sin δk cos θk)

λk = λk−1 + atan2(sin θk sin δk cosφk−1,

cos δk − sinφk−1 sinφk)

(8)

where φk denotes the latitude and λk denotes the longitude of
the k-th waypoint. An exemplary circuit configuration made
with [40] demonstrating these geodetic transformations is
illustrated in Figure 3. Finally, mission-specific operational
commands, such as clockwise loitering maneuvers around
designated waypoints for specified durations to facilitate cargo
drop-off or loading operations, are systematically appended
to construct the final executable trajectory ρ, which is sub-
sequently uploaded to the control platform for autonomous
mission execution.

IV. IMPLEMENTATION AND CASE STUDY

A. Graphical User Interface and Setup

We use PyQT5 [44] to develop a graphical user interface
(GUI) that functions as the Chat Box, enabling the human
pilot to interact with the LLM. The interface integrates both
route planning and path planning functionalities, as illustrated
in Figures 4a, 5a, and 6a. The GUI consists of three main com-
ponents: Toolbar, Message Panel, and Input Box. The Toolbar
allows the pilot to switch between different LLM modes. From
top to bottom, the available options are: Chat (Speech Balloon
Emoji), Short Range (Helicopter Emoji), Medium Range
(Small Airplane Emoji), Long Range (Airplane Emoji), Plan
Route (Pencil Emoji), Plan Path (World Map Emoji), Upload
Path (Joystick Emoji), Hist - Short Range (Clipboard Emoji),
Medium Range (Clipboard Emoji), Long Range (Clipboard
Emoji), and Reset (Counterclockwise Arrows Button Emoji).
Pilots employ Chat for general-purpose queries, while the
three task modes enable planning for different missions. At
any point during the interaction, pilots can activate Plan
Route, Plan Path, or Upload Path to perform route planning,
path planning, or upload the path to the control platform. In
addition, the three Hist functions store past conversations and
provide sample tasks. Finally, pilots can reset the conversation
to initiate a new mission.

When pilots enter text into the Input Box and click the
Send button (Upward Arrow), the text is combined with a
predefined system prompt and submitted to the LLM for infer-
ence. In our implementation, we employ Phi-4-mini-Instruct
[45] as the LLM-as-Parser. The system stores conversational

context so that pilots can iteratively refine the flight plan. The
Message Panel displays all responses, including the LLM’s
outputs as well as generated routes and paths. Upon receiving
pilot commands, the LLM interprets the input and produces an
initial text-based flight plan. Once the pilot accepts this plan,
clicking Plan Route triggers the system to generate a route,
which is then displayed in the Message Panel. If the route is
accepted, the pilot proceeds by clicking Plan Path, prompting
the system to produce the corresponding path. Finally, once
the path is approved, the pilot clicks Upload Path to send it
to the control platform, after which subsequent operations can
be performed within the control environment.

B. Control Platform and Real UAV Configurations

We utilize the Windracers ULTRA UAV [46] in conjunction
with its integrated control platform, comprising Windracers
Mission Control and Windracers Autopilot [40], to execute
flight control and operational missions. Mission Control con-
stitutes a sophisticated multi-UAV distributed control architec-
ture that provides real-time telemetry feedback regarding air-
craft operational status. The platform enables pilots to dynam-
ically modify or reconfigure mission parameters during flight
operations; for instance, pilots can manually delete waypoints,
prompting autonomous navigation to subsequent destinations,
or adjust waypoint coordinates (latitude, longitude, and alti-
tude) through either interactive map manipulation or direct
numerical parameter editing. Mission Control additionally
supports advanced operational capabilities, including loiter
point configurations that enable aircraft to maintain loitering
patterns over designated surveillance areas. Furthermore, the
platform facilitates simultaneous visualization and control of
multiple UAV assets, enabling coordinated monitoring and
collaborative mission execution. While Mission Control and
Autopilot platform provide superior integration and seamless
control with the ULTRA UAV, NELV can alternatively be
implemented using open-source autopilot software platforms
such as PX4 [47] and ArduPilot [48].

The ULTRA [46] is a fixed-wing UAV with a maximum
take-off mass of 510 kg and a useful payload capacity of
150 kg. The recently updated ULTRA MK2 extends this
capability by transporting up to 80 liters of cargo over ranges
of over 1,000 km. Powered by two HIRTH F23 engines, each
rated at 45 horsepower, and fueled by a standard unleaded
petrol/oil mixture, the aircraft achieves a cruise speed of
approximately 40 m/s and operates at altitudes up to 4,000 m.
Depending on configuration, it sustains autonomous flights for
7–9 hours and is compatible with diverse runway conditions,
including paved, grass, gravel, and dirt surfaces. Beyond its
physical specifications, the ULTRA platform supports a range
of mission profiles: cargo delivery, parachute drops for critical
supplies, and aerial survey and detection applications such as
wildfire monitoring.

C. Use Case Setup

We next present three representative use cases of varying
complexity, corresponding to short-, medium-, and long-range
missions. Furthermore, we examine three specific operational



9

(a) LLM-as-Parser

(b) Route Planning (c) Path Planning

(d) Executable Trajectory

Fig. 4. Use Case 1: Short-Range Multi-UAV Patrol (Sec. IV-D).

challenges: multi-UAV patrol, multi-POI delivery, and multi-
hop relocation, which are evaluated across three distinct
datasets and sources, including OpenStreetMap [49], the
Yelp Open Dataset [50], and USA airport fuel prices and
specifications from AirNav [43]. We aim to demonstrate the
scalability of the NELV system through these diverse data
sources, which provide geospatial information through varied
methodologies and formats. For instance, OpenStreetMap
serves as a comprehensive map search service enabling users
to query information for any global location, while the Yelp
Open Dataset constitutes a preprocessed repository containing
extensive POI geographical coordinates and user review data.
Additionally, users can deploy the NELV system on propri-
etary datasets or commercial mapping services such as Google
Maps, demonstrating our system’s adaptability across different
data infrastructures.

In our experimental implementation, we incorporate
airspace information, population density data, and weather
forecasts for path planning operations. Airspace information
is obtained from OpenAIP [51], a worldwide aeronautical
database containing controlled airspace boundaries, flight re-
striction zones, and air traffic control sectors. The system
evaluates airspace violations by checking flight path inter-
sections with restricted geometric zones and applies con-
straint penalties for unauthorized airspace penetration. Pop-
ulation density [49] considerations are implemented through
ground risk assessment, where the system evaluates flight
paths against city boundaries and urban area geometries
to minimize risks over densely populated regions, though
this constraint is disabled for long-range flights operating
at high altitudes. Weather forecast data is sourced from the

High-Resolution Rapid Refresh (HRRR) model stored in the
Herbie dataset [52], providing meteorological predictions at
different pressure altitudes (250 mb for long-range flights
and 950 mb for short-range operations). The weather analysis
incorporates atmospheric parameters including cloud mixing
ratios, temperature, relative humidity, vertical velocity, CAPE,
wind shear components, and horizontal wind vectors. These
parameters are processed to generate composite risk indices,
including SFIP and BRN, which are integrated along flight
path segments and weighted by distance to assess cumulative
weather hazards for path optimization.

D. Use Case 1: Short-Range Multi-UAV Patrol

Implementation Details: We utilize OpenStreetMap [49] as
the primary source of geospatial information. OpenStreetMap
constitutes a freely accessible, open-source mapping service
that enables pilots to query geographical elements through
keyword-based searches, including amenity classifications
(e.g., education, healthcare, transportation), building cate-
gories (e.g., sports, automotive, storage), commercial estab-
lishments (e.g., food, beauty, clothing), and various other
geographic features. The platform supports multiple query
methodologies for identifying objects within target regions,
encompassing bounding box queries, administrative boundary
searches, distance-based range queries, and polygonal area
selections. In our implementation, we establish the map center
at Purdue University Airport and examine forested areas
within a 5 km radius to facilitate a multi-UAV patrol mission
focused on wildfire detection.

Figure 4a demonstrates the interactive dialogue between
the pilot and the LLM, where initial mission parameters are
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Fig. 5. Use Case 2: Medium-Range Multi-POI Delivery (Sec. IV-E).

specified, including the origin point, the detection objective,
the surveillance range, and the size of the UAV fleet. In the
initial dialogue exchange, the LLM successfully identifies the
mission parameters; however, given the absence of explicit
UAV quantity specification, the system defaults to a single-
UAV configuration. Through the utilization of conversational
LLMs, NELV enables pilots to iteratively refine mission spec-
ifications through natural language interaction. For instance,
following the pilot’s specification of five UAVs, the LLM
dynamically updates the mission plan accordingly. Upon pilot
confirmation of the flight plan, the route planning algorithm is
initiated. For multi-UAV route optimization, we employ OR-
Tools [53], with the resulting routes illustrated in Figure 4b.
The forested terrain adjacent to Purdue University is parti-
tioned into five discrete sectors, each assigned a designated
UAV route. The corresponding flight paths are depicted in
Figure 4c; notably, in this short-range operational scenario, the
paths coincide with the routes due to the limited operational
range and altitude constraints, which render weather, airspace,
and terrain-based risks negligible. Figure 4d illustrates the
complete executable trajectory, including take-off and landing
patterns, as well as flight paths to execute the mission.
We demonstrate two distinct operational patterns utilizing
different runway orientations: the take-off pattern aligned in
a northeast-southwest direction and landing oriented in a
nearly east-west configuration. These differentiated runway
approaches prevent runway incursions when multiple UAVs
execute concurrent missions at the same airport facility.

E. Use Case 2: Medium-Range Multi-POI Delivery

Implementation Details: We utilize the Yelp Open Dataset
[50] as the primary source of POI information for mission
planning, encompassing geographical coordinates, establish-
ment ratings, review counts, and operational hours. The Yelp
Open Dataset constitutes limited mapping data, as its reposi-
tory contains POI information exclusively for 11 metropolitan
areas, lacks comprehensive coverage, and does not provide
real-time updates. In contrast, while OpenStreetMap services
provide POI geographical coordinates, they do not incorporate
user-generated metrics such as ratings and review counts.
An alternative commercial mapping solution is Google Maps,
which offers more comprehensive information with real-time
updates; however, each query incurs associated service fees. In
our implementation, we consider a use case wherein a UAV
departs from Indianapolis Airport and navigates to Purdue
University Airport, with intermediate stops at a pharmacy and
a supermarket for supply procurement. The mission objective
is to maximize the quality of these two locations (i.e., ratings
and review counts) while simultaneously minimizing the
total route distance. At each POI, the system automatically
establishes a loiter point where the UAV executes circular
flight patterns at approximately 300 meters Above Ground
Level (AGL) to simulate cargo operations. In practical de-
ployment scenarios, this configuration can be dynamically
adapted based on operational requirements, such as executing
precision landings for ground-based cargo pickup, performing
aerial cargo drops through automated release mechanisms, or
maintaining extended surveillance patterns for reconnaissance
missions.

In Figure 5a, the pilot specifies a flight trajectory from
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Fig. 6. Use Case 3: Long-Range Multi-Hop Relocation (Sec. IV-F).

Indianapolis to Purdue University with an intermediate stop
at a pharmacy. The NELV system accurately recognizes the
start and end points while correctly classifying the pharmacy
as a POI. During this use case, the pilot dynamically adds an
additional POI by requesting a visit to a supermarket. Follow-
ing the LLM’s acknowledgment and the pilot’s confirmation
of mission parameters, the pilot utilizes the interface tools
to execute Algorithm 3 for route optimization, with results
presented in Figure 5b. Subsequently, Figure 5c illustrates
the path transformation from the computed route, which
incorporates meteorological hazards, terrain-based risks, and
airspace restrictions. In Figure 5c, the red boundaries delineate
municipal and township limits, while the blue circles represent
controlled airspace requiring air traffic control clearance.
Additionally, a superimposed heatmap visualizes weather-
related risk distributions across the operational area. The path
planning algorithm enables weight adjustment to prioritize
specific cost functions over others; in this particular use case,
we configure the system to prioritize path distance optimiza-
tion over other considerations such as weather avoidance and
airspace restrictions.

F. Use Case 3: Long-Range Multi-Hop Relocation

Implementation Details: We utilize airport data obtained
from AirNav [43], encompassing locations, identifiers, and
fuel pricing for all airports across the United States. Fuel
prices exhibit substantial variation among different airport
locations. Based on data acquired from AirNav in March
2025, the continental United States contains 2,577 airports, of
which 2,076 provide fuel pricing information. Aviation fuel
prices exhibit substantial variation across locations, ranging

from a minimum of 0.74 USD/L at Clintonville Municipal
Airport to a maximum of 2.77 USD/L at Kodiak Airport.
Consequently, when UAVs conduct long-range multi-hop re-
location missions, the trade-off between fuel costs at different
airports and flight distances must be carefully considered.
In our configuration, the ULTRA UAV features a fuel tank
capacity of 80 L with a fuel consumption rate of 10.95
km/L, yielding a maximum flight range of approximately
876 km. Note that fuel consumption varies with mass and
weather conditions. Due to airport traffic control constraints
and varying operational complexity, estimating the actual
fuel consumption during take-off and landing procedures at
individual airports presents significant challenges. Therefore,
we establish a standardized fuel overhead of approximately
10 liters per airport operation (take-off and landing com-
bined), equivalent to approximately one hour of cruise flight
consumption. This establishes a critical path planning con-
straint wherein edges between airports cannot exceed 876
km, enabling the construction of a graph network for route
planning optimization. All restricted airspace between 15,000
and 40,000 feet are considered given the cruise altitude of
approximately 30,000 feet. Meteorological hazards including
thunderstorm activity, turbulence zones, and icing potential
are incorporated into the path planning algorithm.

In Figure 6a, the pilot specifies a transcontinental flight
from New York to Los Angeles. The start and end points are
accurately recognized by the system. Given that long-range
flights necessitate multiple refueling stops, NELV incorpo-
rates a flight option feature enabling pilot selection among
optimization strategies. By default, the system employs a
balanced configuration, which generates routes that optimize
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the trade-off between total route distance and cumulative cost.
Figure 6b presents all feasible route alternatives. The pilot
retains the capability to modify flight options dynamically. In
this instance, the pilot selects the cheapest option, prompting
the system to reconfigure the flight strategy and select the cor-
responding cost-optimized route. The resulting path derived
from this route selection is illustrated in Figure 6c. Notably,
given the cruise altitude of approximately 30,000 feet for long-
range operations, terrain-based risks are rendered negligible,
and the path planning algorithm considers exclusively airspace
restrictions.

V. ROADMAP AND FUTURE DIRECTIONS

Our current NELV system architecture comprises five dis-
crete components to accommodate the evolving capabilities of
general-purpose LLMs in UAV applications. While present-
day LLMs demonstrate substantial potential, they require spe-
cialized integration with domain-specific knowledge including
airspace regulations, aeronautical mapping data, UAV con-
trol systems, operational protocols, and swarm intelligence,
among others. The modular design of NELV anticipates
the progressive enhancement of LLM capabilities, enabling
gradual consolidation of system components as UAV-specific
language models mature. Furthermore, the development of
comprehensive UAV datasets and specialized training method-
ologies will facilitate the creation of domain-optimized LLM
capable of handling increasingly complex operational scenar-
ios. As illustrated in Figure 7, we envision a systematic evo-
lution toward unified LLM architectures that can seamlessly
integrate multiple UAV operational functions. This roadmap
outlines the progressive integration pathway, delineating the
information requirements, decision-making capabilities, and
technical prerequisites for LLMs at each automation level,
ultimately leading to fully autonomous UAV mission planning
and execution systems.

A. Level 1: LLM-as-Parser

Prerequisite: Prompt engineering.
Task Execution: Route planner (Algorithm 3), path planner
(Algorithm 4), control platform (Algorithm 5), and safety
pilot.
LLM’s Output: Start point, end point, and POIs.
Responsibility: The NELV system currently is Level 1, which
employs LLM as a parser to extract information from human
pilot instructions. This represents a relatively straightforward
application, since the LLM primarily performs linguistic un-
derstanding and reasoning to extract key information from
natural language input, such as the start point and the
end point designations. General-purpose LLMs adequately
perform this function, as they require no specialized UAV
knowledge but focus exclusively on specific token extraction.
In more complex operational scenarios, LLMs must extract
sophisticated constraints and requirements, exemplified when
a human pilot requests “please ensure arrival before the
airport closes,” which contains the time constraint “airport
closing.” In such instances, the LLM need not comprehend
the semantic meaning of “airport closing” but simply process

it as a predefined identifier for subsequent evaluation during
route planning (as implemented in Algorithm 2 - Line 4).
Consequently, while our system effectively performs basic
information extraction, the extractable information remains
limited to predefined keywords specified in the system prompt,
such as the start point, the end point, time constraints, and
similar elements, without the ability to identify unspecified
keyword types.
Challenges: Employing LLM solely for information extrac-
tion presents significant limitations despite its proficiency in
performing this relatively straightforward mission. Since we
do not require the LLM to engage in cognitive processes or
decision-making, it remains incapable of managing operations
beyond predetermined keywords or navigating complex sce-
narios. For the LLM-as-Parser framework, we must prede-
fine the specific information to be extracted in the system
prompt (e.g., names of the start point and the end point).
The LLM consequently fails to comprehend non-predefined
information, such as “this is an urgent medicine delivery,” and
therefore does not incorporate this requirement in the route
planning process. A further limitation is that LLM-as-Parser
does not integrate contextual information to facilitate more
sophisticated inference. For example, in relocation scenarios
where certain airports experience adverse weather conditions
such as snowstorms, aviation best practices dictate avoiding
these locations. If LLM-as-Parser performs only information
extraction, it cannot eliminate these compromised airports
during the route planning phase. Concurrently, if the route
planner does not take into account meteorological factors, the
resulting routes are suboptimal. More critically, in these sce-
narios, human pilots cannot utilize natural language to modify
the information extracted by LLM-as-Parser or adjust the
planned route. Instead, human pilots must manually exclude
these airports, thereby increasing their operational burden.

B. Level 2: LLM-as-Route-Planner

Prerequisites: Prompt engineering and expert feedback.
Task Execution: Path planner (Algorithm 4), control platform
(Algorithm 5), and safety pilot.
LLM’s Output: Route (i.e., a sequence of nodes).
Responsibility: Level 2 of the NELV system implements
LLM-as-Route-Planner for route planning, necessitating that
the LLM possesses comprehensive knowledge of the oper-
ational environment, specifically regarding nodes, including
their geolocations, operational status, and other mission-
critical parameters, such as fuel price. Beyond mere knowl-
edge acquisition, LLM-as-Route-Planner must perform a so-
phisticated analysis of human pilot directives, demonstrate
contextual reasoning capabilities, comprehend human pilot
preferences, and formulate optimal planning solutions. For
example, when given the instruction “I want to fly a UAV to a
nearby airport for refueling, considering the most economical
flight path,” the LLM-as-Route-Planner must systematically
evaluate proximate airports, their geospatial positions, fuel
expenditure metrics, flight consumption algorithms, aerody-
namic efficiency considerations related to wind vectors, and
additional relevant parameters. In contrast, when presented
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Fig. 7. Evolutionary Roadmap of Our NELV System. Green Box – Task Execution: Components required for NELV system operation, demonstrating
progressive integration where higher automation levels reduce component complexity while achieving enhanced system integration, evolving from Level 1
(LLM-as-Parser) to Level 5 (LLM-as-Autopilot). Blue Box – Prerequisites: Infrastructure and knowledge requirements that expand with each automation
level to support increasingly sophisticated LLM reasoning capabilities. Gray Box – UAV System Architecture: Essential UAV sensing, communication, and
operational interface components that provide foundational support across all automation levels.

with the directive “proceed as quickly as possible, as I need
to use it soon,” the LLM-as-Route-Planner must identify the
temporally optimal route. The LLM-as-Route-Planner must
not only interpret the implicit objectives underlying human
instructions, but also perform computational analysis to de-
termine viable routes that satisfy these objectives.

Challenges: To fulfill these operational requirements, LLM-
as-Route-Planner necessitates enhanced knowledge resources
and computational capabilities for effective decision-making
processes. Primarily, the system requires access to compre-
hensive geospatial databases containing detailed information
about mission-relevant nodes, which exhibit significant quan-
titative variation depending on specific mission parameters
and geographical contexts. For instance, according to the Yelp
Open Dataset [50], Indianapolis contains 54 pharmacies and
234 supermarkets, illustrating the substantial variability in
POI density across different urban environments and service
categories. Additionally, LLM-as-Route-Planner must execute
computational operations utilizing this information, such as
calculating flight duration metrics and ranking airports accord-
ing to relevant criteria. Furthermore, LLM-as-Route-Planner
must demonstrate a sophisticated understanding of pilot pref-
erences, encompassing both explicit and implicit dimensions.
Explicit preferences are directly articulated within the pilot
instructions, including economic efficiency considerations,
temporal urgency factors, or spatial proximity requirements.
Implicit preferences are derived from human experiential

judgments, which could potentially be addressed through
reinforcement learning from human feedback (RLHF) [54]–
[56]. LLM-as-Route-Planner might achieve these functional
capabilities through specialized training protocols or fine-
tuning methodologies, or potentially through integration with
auxiliary APIs. Regardless of the implementation methodol-
ogy, this operational level necessitates that the LLM process
substantially expanded information volumes and leverage this
information to execute more sophisticated and autonomous
decision-making processes.

C. Level 3: LLM-as-Path-Planner

Prerequisites: Prompt engineering, expert feedback, airspace
information.
Task Execution: Control platform (Algorithm 5), and safety
pilot.
LLM’s Output: Path (i.e., a sequence of waypoints).
Responsibility: Level 3 of the NELV system implements
LLM-as-Path-Planner for more detailed waypoint determi-
nation, which requires significantly more information com-
pared to Level 2 LLM-as-Route-Planner, as it must provide
waypoints beyond the nodes specified in the route. While
LLM-as-Route-Planner may be considered a common-sense
node selection process, waypoint determination within a
path demands more extensive aviation domain knowledge,
including considerations of densely populated areas, different
airspace classifications, air traffic density, and other factors
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to facilitate rational path planning. Similar to LLM-as-Route-
Planner, LLM-as-Path-Planner must comprehend human pilot
preferences, not only regarding node selection but also path
features. These preferences might include specific flight times,
flight paths, and other operational parameters. Another dis-
tinction from route planning is that the waypoints in the UAV
mission paths are three-dimensional, encompassing latitude,
longitude, and altitude. LLM-as-Path-Planner must determine
not only the geographical position of the waypoints but also
consider flight altitude, adhering to FAA regulations while
accommodating human pilot preferences.
Challenges: Even if LLM capabilities can achieve reasonable
route planning at Level 2, a substantial research gap exists in
the transition to Level 3 path planning. The distinctive chal-
lenges of path planning involve understanding and complying
with FAA regulations and planning appropriate flight altitudes.
Consequently, LLMs require profound comprehension of FAA
regulations, particularly considering that multiple factors in-
voke different rules, including UAV type, dimensions, weight,
flight timing (e.g., nighttime operations), flight velocity, and
numerous other regulatory provisions. Typically, the current
NELV system requires human pilots to manually specify the
UAV type (i.e., pre-configure certain UAV types and missions)
to ensure compliance with FAA regulations. When directly
utilizing LLM-as-Path-Planner, it must consider different FAA
regulations based on human pilot language input or system
background information. An additional challenge involves
UAV flight altitude design. Although take-off, landing, and
mission execution traffic patterns are designed within the
control platform, consideration must also be given to path
altitude during transit. Flight altitude planning is crucial
as it affects fuel efficiency, airspace management, weather
considerations, overall flight safety, and other factors.

D. Level 4: LLM-as-Executor

Prerequisite: Prompt engineering, expert feedback, airspace
information, and UAV simulator.
Task Execution: Safety pilot.
LLM’s Output: Trajectory (i.e., a sequence of waypoints in-
cluding take-off, landing, and mission-specific flight patterns).
Responsibility: Level 4 of the NELV system further en-
compasses the functionality of the cloud platform, directly
employing LLM-as-Executor to plan executable trajectories
and remotely control UAV flight operations. As mentioned
previously, the control platform extends beyond basic path
planning to consider flight patterns, which is particularly
crucial for fixed-wing UAVs that require specific patterns
for take-off, landing, and mission execution. Generally, fixed-
wing UAVs adhere to standard traffic patterns (i.e., left-hand
patterns) for take-off and landing procedures. Consequently,
LLM-as-Executor must design different traffic patterns based
on airport specifications. Beyond take-off and landing consid-
erations, LLM-as-Executor also needs to implement different
designs for various mission types. For example, in a mission
involving wild yak population observation, multi-rotor UAVs
can hover stationary, allowing LLM-as-Executor to simply
design a three-dimensional coordinate position. In contrast,

fixed-wing UAVs, which are incapable of hovering, require
circular traffic patterns to facilitate continuous observation of
yak populations at the same location. LLM-as-Executor ne-
cessitates a comprehensive understanding of different UAVs’
traffic characteristics to effectively design take-off, landing,
and mission-specific traffic patterns.
Challenges: The primary challenge involves extensive knowl-
edge of UAVs, particularly regarding different traffic patterns
for various UAV types. Similar to path planning, this is
strongly correlated with UAV types and sizes. Comparatively,
the challenges for LLM-as-Executor focus more on UAV-
inherent limitations; for example, it cannot command vertical
take-off and landing for fixed-wing UAVs, as this would
result in insufficient lift and subsequent crash. Furthermore,
standard take-off and landing patterns vary significantly for
UAVs of different sizes and weights. Furthermore, mission-
related traffic patterns constitute another key challenge, with
substantial variations between different mission types. Us-
ing fixed-wing UAVs as examples, different mission-specific
traffic patterns might include circular flight (e.g., search and
rescue), airdrop operations (e.g., medication delivery), grid
coverage (e.g., agricultural spraying), and numerous others.
In practice, mission-related traffic patterns present greater
difficulty compared to take-off and landing procedures, as
airport information is finite and predetermined, therefore
we can always preemptively collect comprehensive data on
global airports for LLM-as-Executor training. However, most
missions remain unpredictable and uncontrollable, such as
search and rescue operations following natural disasters.
LLM-as-Executor requires an exceptionally comprehensive
understanding of potential missions and scenarios to conduct
rational planning.

E. Level 5: LLM-as-Autopilot

Prerequisite: Prompt engineering, expert feedback, airspace
information, UAV simulator, and ATC datasets.
Task Execution: LLM-as-Autopilot only.
LLM’s Output: UAV actions and interpretations (to enable
human pilot intervention when necessary).
Responsibility: The final level of the NELV system is LLM-
as-Autopilot, representing a comprehensive integration where
the LLM autonomously controls the UAV to complete mis-
sions upon receiving human pilot instructions without requir-
ing additional human intervention. Importantly, this does not
imply that the LLM directly manipulates the UAV’s control
surfaces. Rather, it autonomously utilizes available resources
and integrated APIs for operation, including map service
APIs, air traffic APIs, control APIs, and other functional inter-
faces. The emphasis here is on autonomous decision-making
based on current situational assessment, comparable to the
capabilities of a qualified human pilot making decisions based
on available information. An enhanced functionality would
be maintaining communication capabilities with human pi-
lots. For example, when UAV operational conditions become
complex, the system should report to the supervising human
pilot and request assistance or control transfer. In addition, it
must facilitate information sharing or access permissions and
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communicate planned actions with other LLM-as-Autopilots.
For example, in disaster search and rescue operations, multiple
UAVs conducting collaborative search missions can engage
in real-time sharing of search area information and coordi-
nate subsequent search zone allocations to optimize search
efficiency.
Challenges: The fundamental challenge of LLM-as-Autopilot
involves LLM simulation of human pilot decision-making be-
haviors, specifically requiring a comprehensive understanding
of all UAV systems, communication protocols with super-
vising human pilots, and information exchange mechanisms
with other LLM-as-Autopilots. Beyond basic control func-
tionalities, a more critical challenge emerges when the UAV
encounters unpredictable contingencies, necessitating reliable
response protocols. For example, when a UAV experiences
bird strike incidents, the LLM-as-Autopilot must first stabilize
the aircraft, subsequently assess all systems’ operational sta-
tus, request human pilot intervention if warranted, and finally
alert other UAVs regarding the avian threat to prevent addi-
tional incidents. The LLM requires comprehensive knowledge
of all UAV systems to perform effective system diagnostics,
operational assessment, and implement appropriate emer-
gency protocols, while simultaneously demanding advanced
UAV-specific logical reasoning capabilities. In summary, the
key challenge lies in effectively achieving human pilot-level
decision-making capabilities in various operational scenarios.

VI. CONCLUSION

This paper presented the Next-Generation LLM for UAV
(NELV) system, which maps natural-language tasking to
short-, medium-, and long-range flight execution. NELV
implements an end-to-end pipeline, from language under-
standing through route and path planning to control integra-
tion and real-world deployment. Across three representative
case studies (short-range multi-UAV patrol, medium-range
multi-POI delivery, and long-range multi-hop relocation), we
demonstrated its feasibility in operational environments. The
system reduces pilot workload while respecting user-defined
constraints, applicable airspace regulations, and executable
waypoints.

Looking ahead, we outlined a five-level roadmap for LLM-
powered UAV autonomy, progressing from the current LLM-
as-Parser stage to the envisioned LM-as-Autopilot with pilot-
level decision making. This trajectory emphasizes the gradual
integration of reasoning, planning, and control as models ma-
ture and as domain-specific datasets, regulatory codices, and
communication protocols are incorporated. Key challenges
remain, including the scarcity of UAV-specific datasets, the
difficulty of embedding regulatory and safety knowledge into
models, and the need for robust benchmarks and simulators
for safety-critical evaluation. In conclusion, NELV serves both
as a practical demonstration and as a forward-looking frame-
work for LLM-enabled aerial systems, laying the foundation
for UAVs that are safer, more adaptable, and more accessible
to human operators.
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